Reaction Design Develops Software to Determine Soot Particle Sizes in Advance of Automotive Regulations

Predictive models enable automakers to identify harmful soot partculates early in the engine design process

San Diego, Calif. – Nov. 3, 2011  – Reaction Design®, a leading developer of combustion simulation software, announced that automakers and energy producers are getting a jump on the ability to reduce soot particle emissions, thanks to research by the Model Fuels Consortium (MFC). The Reaction Design-led consortium completed years of research and experimental validation, which has led to the development of software that its members can use to accurately simulate the formation of soot particulates. The software will be used to develop cleaner-burning engines in advance of impending regulations in the U.S. and Europe, which call for limits on the size and number of soot particles emitted by passenger cars.

“Soot formation occurs when fuels don’t fully combust, and recent studies show that soot particles smaller than 100 nanometers can be especially harmful to human health,” said Ellen Meeks, vice president of product development at Reaction Design. “While engine exhaust regulations of the past decade have been largely focused on limiting the total amount of soot emissions, just last month the European Union extended its Euro5 regulation to control the actual number of particles, due to these known health effects. The MFC and Reaction Design have been working proactively to develop soot modeling approaches that help reduce these harmful emissions, as we anticipate that more regulations will follow with increasingly strict limits on particle size and number.”

Unlike today’s methods that rely on empirical data to determine the amount of soot that an engine will produce, the MFC builds on fundamental scientific data accumulated over a decade of combustion kinetics research conducted by Reaction Design and others. Using proprietary solution methods, Reaction Design’s simulation software resolves particle size distributions based on the fundamental particle growth, coalescence and oxidation processes occurring within a combustion chamber. With these software models and tools, MFC members will be able to accurately simulate the formation, agglomeration and reduction of soot particles with diameters from nanometers to microns in size. Using this predictive model of soot behavior, designers will be able to see the effects of changing engine parameters long before they commit to building a costly prototype.

“Automakers face a number of compliance issues like CAFE and Euro5+ that add to the complexity of engine design and lengthen the design process,” said Charles Westbrook, senior scientist at Lawrence Livermore Laboratory and chief technical advisor to the MFC. “MFC members recognize the importance of science-based soot modeling, because it can predict behavior, meaning we can test new designs on a computer rather than a physical prototype. This can shave days, weeks or months from a design cycle to get cleaner cars more quickly on the road.”

The Consortium is gathering on November 14 and 15 in San Diego to discuss its latest findings and the next phase of project development. The soot model will be made available to current members of the MFC in December 2011. Interested companies may apply for membership and receive exclusive access to this model and other MFC data. For more information, please call 1-858-550-1920 or email

About the Model Fuels Consortium
Reaction Design developed the Model Fuels Consortium in 2005 to address the emerging challenges experienced by the automotive and fuel industry. The Consortium is composed of energy companies, engine manufacturers and academic advisors. Its goal is to enable the design of cleaner-burning, more-efficient engines and fuels by accelerating the development of software tools and databases to streamline and bolster these advances. Members include ConocoPhillips, GE Energy, l’Institut Français du Pétrol (IFP), Mazda, Oak Ridge National Laboratory, Petrobras, PSA Peugeot Citroën, Saudi Aramco, Suzuki, Toyota, and Volkswagen.

About Reaction Design
Reaction Design, a San Diego, California-based software supplier, enables transportation manufacturers and energy companies to rapidly achieve their Clean Technology goals by automating the analysis of chemical processes via computer simulation and modeling solutions. Reaction Design is the exclusive developer and distributor of CHEMKIN, the de factostandard for modeling gas-phase and surface chemistry that provides engineers ultra-fast access to reliable answers that save time and money in the Development process. Reaction Design’s FORTÉ is an advanced Computational Fluid Dynamics (CFD) simulation package for realistic 3D modeling of fuel effects in internal combustion engines with superior Time-to-Solution metrics that fit in commercial development timeframes. Reaction Design’s ENERGICO software brings accurate chemistry simulation to gas turbine and boiler/furnace combustion systems using automated reactor network analysis. Reaction Design also offers the CHEMKIN-CFD software module, which brings detailed kinetics modeling to other engineering applications, such as CFD packages. Reaction Design’s world-class engineers, chemists and programmers have expertise that spans multi-scale engineering from the molecule to the production plant. Reaction Design serves more than 400 customers in the commercial, government and academic markets

Reaction Design can be found online at 

CHEMKIN®, CHEMKIN-PRO® and Reaction Design® are registered trademarks of Reaction Design. FORTÉ, ENERGICO, CHEMKIN-CFD and Model Fuels Consortium are trademarks of Reaction Design. All other trademarks are the property of their respective holders.